
Day 2, Morning, Slide 1

Day 2, Morning
Statistical Intervals
Hypothesis Tests
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Statistical Inference
• Population and samples
• Remember, to use sample data for inference, 

needs to be representative of population for 
the question(s) of interest.

• Some definitions:
– A parameter is a number associated with a 

population. Assumed to be fixed but unknown.
– A statistic is a number computed from a sample. 

Changes with each new sample.
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Statistical Inference: Intervals
• Estimate a parameter using sample data.

– Point estimate: A single number.
– Interval estimate (aka confidence interval): An 

interval of values we are fairly confident covers 
the true population parameter.

• Find an interval that is likely to cover a 
specified percentage of new values from the 
same population
– This is a prediction interval.
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Statistical Inference: Hypothesis Tests

• Test whether a parameter = a specific value, 
versus either not equal, greater than, or less 
than that value.

• Special case: In regression, test whether the 
slope of the line = 0, meaning there is no 
linear relationship between x and y.

• Compare populations, for instance to see if 
means for several populations are equal.
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Parametric and Nonparametric
• Parametric methods (bit of a misnomer):

– Based on assuming a particular underlying population 
distribution, usually “normal.”

– Can sometimes be used even without that assumption, for 
large samples.

• Nonparametric methods: 
– Can be used without assuming a distribution.
– Often not as “powerful” as parametric methods.

• When in doubt, safer to use nonparametric method
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Confidence Intervals
• A parameter is a population characteristic – value 

is usually unknown. We estimate the parameter using 
sample information. 

• A statistic, or estimate, is a characteristic of a sample. 
A statistic estimates a parameter.

• A confidence interval is an interval of values 
computed from sample data that is likely to include 
the true population value. 

• The confidence level (often .95) for an interval describes 
our confidence in the procedure we used. We are 
confident that most of the confidence intervals we 
compute using our procedure will contain the true 
population value.



Hands-On Activity

• Applet to demonstrate confidence interval 
concepts

http://www.rossmanchance.com/applets/New
Confsim/Confsim.html

• Details on activities handout
• Note that on average, about 19 out of 20 of 

all 95% confidence intervals should cover 
the true population value.
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Example: pH of Rain in Davis
1980 to 2009; what is population mean?
Sample size = 30, reasonably bell-shaped
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Confidence interval for mean
• Assume population is close to normal.
• Also works if n is large (30 if no outliers or 

major skew, perhaps 50 or so if more skewed)
• Based on knowledge of sampling distribution 

of the sample mean.
• Sampling distribution gives range and 

probability distribution for all possible sample 
means if infinite number of samples of size n 
taken from the population. 
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Notation for Means, Quantitative Variables

• Take sample of size n from a population and 
measure a quantitative variable. 

• Notation for Population (uses Greek letters):
µ = mean for the population of measurements. 
σ = standard deviation for the population.

• Notation for Sample:
= sample mean for a sample of n individuals.

s = sample standard deviation for the sample.
x
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Sampling Distribution 
of the Sample Mean

• Suppose the distribution of possible values 
is normal with mean µ and standard 
deviation σ and/or n is large.

• The distribution of possible values for the 
sample mean      is normal with mean µ and 
standard deviation 

x

n
σ
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Example: pH values in Rainfall
• Suppose individual pH values in annual 

rainfall in a certain area are from a normal 
distribution with µ = 5.6 and σ = 0.5. 
– From Empirical rule, almost all individual

values are with 3(0.5) = 1.5 of mean,
– In range 5.6 +/- 1.5, or 4.1 to 7.1

• Mean pH for n = 25
– normally distributed with mean µ = 5.6 and 

standard deviation =  σ/    = 0.5/5 = 0.1
– Mean almost always in the range 5.6 +/- 0.3, or 

5.3 to 5.9.

n



7.16.66.15.65.14.64.1
pH

0.5
0.1

StDev

Comparing individual pH values with Mean pH for n=25

Mean of 25 pH values

Individual pH values

Also, from Empirical Rule, about 95% of sample 
means in range 5.4 to 5.8. 
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Confidence Interval for Mean µ

• Suppose we know population s.d. σ = .5, and we 
have one sample mean      = 5.67.

• For n = 25, 95% of the time     is within 2(.1) = .2 of 
the true mean µ.

• If this is one of those times, then we know µ and      
are no more than 0.2 apart. 

• So, we guess that µ is in the interval 5.67 ± .2 or 
5.47 to 5.87.

• We have just found a 95% confidence interval for µ.

x
x

x
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Student’s t-Distribution:
Replacing σ with s

If the sample size n is small, 
this standardized statistic will 
not have a normal distribution 
but rather a t-distribution with 
n – 1 degrees of freedom (df).

Dilemma: we generally don’t know σ.  Using s we have:

( )
/

x n xt
ss n

µ µ− −
= =
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General Formula, C.I. for a Mean

* sx t
n

± ×

Explanation of the pieces:
= sample mean

t* = value from “t distribution”
s = sample standard deviation

x
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Finding the t-multiplier
• R Commander:

Distributions → Continuous distributions 
→ t distribution → t quantiles
– Probabilities: For 95% C.I., use .025
– Degrees of freedom = n – 1
– Lower tail
– Gives negative of the t-multiplier
– Ex: .025, 25, lower tail → −2.059539, 

multiplier ≈ 2.06
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Using R Commander to find a 
confidence interval for a mean directly

• R Commander links tests and confidence 
intervals.
Statistics → Means → Single sample t-test

• Give desired confidence level (most common is 
.95, but sometimes use .90 or .99)

• Ignore remaining options for now (they are for 
hypothesis tests).
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Activity: Find 90% C.I. for mean pH 
for Davis rainfall

• Import data from Excel: DavisRain
• Find a stem and leaf plot. Does it look 

approximately normal?
• Find a 90% confidence interval for the 

mean. (Use pH, change level to .90)
Statistics → Means → Single sample t-test
• Interpret the interval. What mean is it for?
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Results should look like this
1 | 2: represents 0.12
leaf unit: 0.01

n: 30
54 | 79
55 | 
56 | 1
57 | 09
58 | 26788
59 | 1578
60 | 34456678
61 | 0133
62 | 247
63 | 3

90 percent confidence 
interval:
5.906136 6.036531 

sample estimates:
mean of x 
5.971333
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Suppose lognormal is better model

• Note that for normal distribution, mean = 
median. So, a C.I. for the mean is also a C.I. 
for the median.

• Not true for lognormal distribution (mean ≠
median). We will find C.I. for median, not 
mean.

• Basic idea: Transform data using y = log(x), 
find C.I., transform back.
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Rationale
• Suppose variable x has lognormal distribution. 
• Then y = log(x) has normal distribution.
• mx = median(x), value with 50% of x below it.
• my = median(y) = value with 50% of y’s 

below it. 
• my = log(mx), i.e. can find 50% point and then 

take log or take logs then find 50% point.
• This is not true for the means. Mean of log(x) 

is not the same as log of mean(x).
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Rationale, continued
Want C.I. for median(x) = mx

• Find 95% C.I. for mean of y, same as median of 
y, my. (Remember, y’s are normal.)

• Remember that my = log(mx)
• Suppose interval is L to U. We are 95% 

confident that L < my < U, or L < log(mx) < U
• So 95% confident that exp(L) < mx < exp(U)
• So 95% confidence interval for mx exp(L) to 

exp(U)
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To Summarize

• Transform x’s by using y = log(x) 
(Natural log)

• Find 95% confidence interval for mean 
(median) of y, using t interval as before

• Transform endpoints of interval using 
exponential function.

• Result is a 95% confidence interval for the 
median of x.
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Activity: Benzene data
• Import data from Excel: Benzene
• Look at histogram to see right skewed.
• Create new variable, logBenz
Data → Manage variables in → Compute new...

logBenz is created as log(Benzene)
• Find 95% confidence interval for mean of 

logBenz. Should get 4.29842 to 5.85981
• Use calculator to find exp(4.29842) to 

exp(5.85981) is 73.583 to 350.658
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Benzene example, continued

• 95% confidence interval for population 
median benzene is 73.583 to 350.658.

• If we had used normal model assumption on 
original benzene data, 95% confidence 
interval for the mean would be 133.9483 to 
520.0267.

• Remember that mean is 327, median is 190, 
so they are very different.
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Activity
• Import the Saddle River data from Excel file.
• Investigate the shape of the “Flow” variable.
• Compare the sample mean and sample median.
• Get a 95% confidence interval for the mean.
• Transform and get a 95% confidence interval for 

the median that way.
• Results: C.I. for mean: (1447.787, 1906.644)

C.I. for median: exp(7.134264, 7.413504), which 
is (1254.21, 1658.23)
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Prediction Interval

• A prediction interval is an interval predicted 
to include a new observation from the same 
population with specified probability.

• Example: A 90% confidence interval for the 
mean pH for Davis rainfall is 5.91 to 6.04.

• What interval do we predict 90% of future 
individual values to fall in, assuming the past 
and future represent the same population?
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Nonparametric Prediction Interval

• Suppose there are 30 observations. What is 
the probability that a new, 31st observation, 
will fall between the minimum and 
maximum of the first 30 observations?

• Probability that the 31st observation will be 
the largest is 1/31. Similarly, probability that 
it will be the smallest is 1/31. So probability 
that it will not be largest or smallest is 29/31. 

• Thus, the interval (min to max) is a 29/31 or 
93.5% prediction interval. 
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Nonparametric P.I., continued
• In general, if there are n observations, then (min to 

max) is a (n – 1)/(n + 1) prediction interval.
• Reasoning can be extended. For a (1 – α) P.I., find c 

= (α/2)(n + 1). Then the interval is the the c-th 
smallest to c-th largest observation.

• Ex: 90%, α = .10. For n = 30, c = (.05)(31) = 1.55. 
Interpolate, or roughly, use 1.5th smallest and 
largest.

• Davis pH data: Lower end, halfway between 1st and 
2nd smallest (5.47+5.49)/2=5.48. Upper end, 
halfway between 6.27 and 6.33, or 6.30.



Hands-On Activity

• Find a 90% prediction interval for a new 
value based on the San Francisco effluent 
nickel data. 

• There are 39 observations
• Lowest 3 observations are 1.9, 2.0, 2.1
• Highest 3 observations are 3.7, 3.9, 4.4
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Parametric P.I., assuming normal

• If we knew µ and σ, then 95% P.I would be 
about µ ± 2σ. 

• More complicated otherwise.
– Because of estimating µ, need to add same 

variability we use to get C.I. for µ .
– Because of estimating σ, need to use t* as 

multiplier instead of 2.
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Parametric P.I., continued

Prediction interval is
1* 1x t s
n

± +

where t* is chosen so the area above it is 
α/2 in a t-distribution with degrees of 
freedom = n – 1. There is no easy way to do 
this in R Commander, but see next slide.
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Using C.I. to find P.I.

Recall, a confidence interval is 
Prediction interval is

1 1* 1 * * 1n sx t s x t s x t n
n n n

+
± + ⇒ ± ⇒ ± +

So if you have a C.I. for µ:
• Find the “half-width” (part after the ± sign)
• Multiply it by           to get half-width for P.I.
• Add and subtract that half-width to 

1n +
x

* sx t
n

±
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Davis pH Example
• R Commander gave 90 percent confidence 

interval as 5.906136 to 6.036531and mean of x 
as 5.971333. 

• From these, easy to see half-width is .0652.
•
• So a 90% P.I. is 5.971 ± .363 or 5.608, 6.334
• Nonparametric version was 5.55 to 6.30.
• Note that P.I. is much wider than C.I for mean.

(.0652) 31 .3630=
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Basics of Hypothesis Testing
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Basic Steps for  
Testing Hypotheses

1. Determine the null hypothesis 
and the alternative hypothesis.

2. Collect data and summarize with a 
single number called a test statistic.

3. Determine how unlikely test statistic 
would be if null hypothesis were true.

4. Make a statistical decision.
5. Make a conclusion in context.
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Step 1. Determine the hypotheses.

• Null hypothesis—hypothesis that 
says nothing is happening, status quo, 
no relationship, chance only, parameter 
equals a specific value (called “null value”).

• Alternative (research) hypothesis —
hypothesis is usually the reason data being 
collected;  researcher suspects status quo 
belief is incorrect or that there is a 
relationship or change, or that the “null 
value” is not correct.
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Class Input and Discussion
Share examples of hypothesis testing 
situations for your job:

• What was the question of interest?
• What were the null and alternative 

hypotheses?
• What kind of data did you have 

available to make a decision?
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Example (analogy):  A Jury Trial
If on a jury, must presume defendant is innocent 
unless enough evidence to conclude is guilty. 

Null hypothesis: Defendant is innocent.
Alternative hypothesis: Defendant is guilty.

• Trial held because prosecution believes status 
quo of innocence incorrect. 

• Prosecution collects evidence, like researchers 
collect data, in hope that jurors convinced such 
evidence extremely unlikely if assumption of 
innocence were true.
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Step 2. Collect data and 
summarize with a test statistic.

Decision in hypothesis test based on single 
summary of data – the test statistic. Often this is 
a standardized version of the point estimate.

Step 3. Determine how unlikely test statistic   
would be if null hypothesis true.

If null hypothesis true, how likely to observe sample 
results of this magnitude or larger (in direction of 
the alternative) just by chance? … called  p-value.
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Step 4. Make a Statistical Decision.
Choice 1: p-value not small enough to convincingly 

rule out chance. We cannot reject the null 
hypothesis as an explanation for the results. 
There is no statistically significant difference
or relationship evidenced by the data.

Choice 2: p-value small enough to convincingly 
rule out chance. We reject the null hypothesis
and accept the alternative hypothesis. There is a 
statistically significant difference or relationship 
evidenced by the data.

How small is small enough?  
Standard is 5%, also called level of significance.
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What Can Go Wrong:
The Two Types of Errors

Courtroom Analogy: Potential choices and errors

Choice 1: We believe  we have enough evidence to conclude 
the defendant is guilty. 
Potential error:  Defendant is innocent; an innocent person 
falsely convicted and guilty party remains free.

Choice 2: We cannot rule out that defendant is innocent, 
so he or she is set free without penalty.
Potential error: Defendant is guilty; a criminal has been 
erroneously freed.

Choice 2 is usually seen as more serious.
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Medical Analogy: False Positive vs False Negative

Tested for a disease; most tests not 100% accurate.

Choice 1: Medical practitioner thinks you have disease.    
Test result strong enough to be “positive” for disease.
Potential error: You are healthy but told you’re diseased. 
Your test was a false positive.

Choice 2: Medical practitioner thinks you are healthy.    
Test result weak enough to be “negative” for disease.
Potential error:  You have disease but told you do not. 
Your test was a false negative.

Which is more serious? Depends on disease and consequences.

Null hypothesis: You do not have the disease.
Alternative hypothesis: You have the disease.
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The Two Types of Errors in Testing

• Type 1 error can only be made if the 
null hypothesis is actually true.

• Type 2 error can only be made if the 
alternative hypothesis is actually true.
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Class Input and Discussion
In hypothesis tests for your job:

• What are the null and alternative 
hypotheses?

• What would be the conclusion in context 
if the null hypothesis were rejected?

• What would be a Type 1 error?
• What would be a Type 2 error?
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Probabilities Associated with Errors

• If  the null hypothesis is true, probability of making 
a type 1 error is equal to the level of significance, 
usually 0.05. 

• If the null hypothesis is not true, a type 1 error 
cannot be made.

We can only specify the conditional probability of 
making a type 1 error, given that the null 
hypothesis is true.  That probability is called the 
level of significance, usually 0.05.

Level of Significance and Type I Errors
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Probabilities Associated with Errors

• A type 2 error is made if the alternative hypothesis 
is true, but you fail to choose it. 

• A type 2 error can only be made if the alternative 
is true.

• The probability of doing that depends on which 
part of the alternative hypothesis is true, so 
computing the probability of making a type 2 error 
is not feasible unless a specific value in the 
alternative is specified.

Type 2 Errors
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Probabilities Associated with Errors

• The power of a test is the probability of making 
the correct decision when the alternative 
hypothesis is true.  

• Power = 1 – P(Type 2 error)
• If the population value falls close to the value 

specified in null hypothesis, then it can be difficult 
to get enough evidence from the sample to 
conclusively choose the alternative hypothesis, so 
low power if null and truth are close.

The Power of a Test
Type 2 Errors and Power

Three factors that affect probability of a type 2 error
1. Sample size; larger n reduces the probability of a 

type 2 error without affecting the probability of a 
type 1 error.

2. Level of significance; larger α reduces probability 
of a type 2 error by increasing the probability of a 
type 1 error.

3. Actual value of the population parameter; (not in  
researcher’s control). Farther truth falls from null 
value (in direction of alternative), the lower the 
probability of a type 2 error.

Power curves, one-sided t-test for one mean; effect 
size = mean difference/s.d. (from Mind On Statistics)
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• If consequences of a type 1 error are very serious, 
then only reject null hypothesis if the p-value is very 
small.

• If type 2 error more serious, should be willing to 
reject null hypothesis with a moderately large p-
value, 0.05 to 0.10.

Possible Errors and Level of Significance

In deciding whether to reject the null hypothesis 
consider the consequences of the two potential 
types of errors. 

Truth, decision, errors, probabilities
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Real Importance versus 
Statistical Significance

A statistically significant relationship or difference 
does not necessarily mean an important one. 

Whether results are statistically significant or not, it 
is helpful to examine a confidence interval so that 
you can determine the magnitude of the effect. 

From width of the confidence interval, also learn 
how much uncertainty there was in sample results.
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Role of Sample Size 
in Statistical Significance

If the sample size is large enough, almost 
any null hypothesis can be rejected. 
There is almost always a slight relationship 
between two variables, or a difference 
between two groups, and if you collect 
enough data, you will find it.
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No Difference versus No 
Statistically Significant Difference

• If the sample size is too small, an important 
relationship or difference can go undetected. 

• In that case, we would say that the power
of the test is too low.

• This is more likely to be a problem with your 
data than the other issue (statistical 
significance but not practical significance.
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Finding Appropriate Sample Size 
and/or Power

• Specify what you think the truth is for the 
population.

• Specify the level of significance you plan to 
use (usually .05)

• Specify what power you want (probability of 
detecting the “truth” you specified above).

• Alternatively, specify what sample size you 
can afford, and compute power.
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Resources and Example
• R Commander doesn’t calculate power.
• Some good links at www.statpages.org
• Example (Carrie Austin): Compare mercury 

in Walker Creek delta and other areas. 
Suppose true means and std. deviations are:

Walker Creek delta Other locations

Mean 1.6 .5
Std Dev 1.1 .3
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Link from statpages.org to Power, sample size, for two 
groups and click on first entry.

http://www.dssresearch.com/toolkit/sscalc/size_a2.asp

Result (next slide): Need n = 9 in each sample.

Used level of significance = .05 and power = .90.

Walker Creek delta Other locations

Mean 1.6 .5
Std Dev 1.1 .3
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Hands-On Activity

Instructions on Activities Handout
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